LangChain RAG Agent
Retrieval-Augmented Generation agent built with LangChain for document Q&A.
PythonLangChainadvanced
langchainragvector-dbqa
Last updated on January 12, 2024
LangChain RAG Agent
Build a sophisticated Retrieval-Augmented Generation (RAG) agent using LangChain for intelligent document question-answering.
Architecture
This example demonstrates a complete RAG pipeline:
- Document Loading: Ingest documents from various sources
- Text Splitting: Break documents into manageable chunks
- Embedding: Convert text to vector representations
- Vector Storage: Store embeddings in a vector database
- Retrieval: Find relevant documents based on queries
- Generation: Generate answers using retrieved context
Key Components
python1from langchain.chains import RetrievalQA 2from langchain.embeddings import OpenAIEmbeddings 3from langchain.vectorstores import Chroma 4from langchain.llms import OpenAI 5 6# Initialize components 7embeddings = OpenAIEmbeddings() 8vectorstore = Chroma(embedding_function=embeddings) 9qa_chain = RetrievalQA.from_chain_type( 10 llm=OpenAI(), 11 retriever=vectorstore.as_retriever() 12)
Applications
- Internal knowledge base systems
- Research paper analysis
- Legal document review
- Technical documentation Q&A